Strawberries spoil rapidly after harvest due to factors such as the ripening process, weight loss, and, most importantly, microbial contamination. Traditionally, several methods are used to preserve strawberries after harvest and extend their shelf life, including thermal, plasma, radiation, chemical, and biological treatments. Although these methods are effective, they are a concern from the perspective of safety and consumer acceptance of the treated food. To address these issues, more advanced environment‐friendly technologies have been developed over the past decades, including modified and controlled atmosphere packaging, active biopolymer‐based packaging, or edible coating formulations. This method can not only significantly extend the shelf life of fruit but also solve safety concerns. Some studies have shown that combining two or more of these technologies can significantly extend the shelf life of strawberries, which could significantly contribute to expanding the global supply chain for delicious fruit. Despite the large number of studies underway in this field of research, no systematic review has been published discussing these advances. This review aims to cover important information about postharvest physiology, decay factors, and preservation methods of strawberry fruits. It is a pioneering work that integrates, relates, and discusses all information on the postharvest fate and handling of strawberries in one place. Additionally, commercially used techniques were discussed to provide insight into current developments in strawberry preservation and suggest future research directions in this field of study. This review aims to enrich the knowledge of academic and industrial researchers, scientists, and students on trends and developments in postharvest preservation and packaging of strawberry fruits.