Refractive index and extinction coefficient (optical constants) are essential in photonic design and thermal radiation utilization. These constants vary with the material phase, temperature, wavelength, and subject dimension. Precisely retrieving these constants of a thin film is thus challenging at elevated temperatures. To tackle this challenge, a methodology for retrieval using emittance at different emission angle θ has been developed here. The method contains four steps and takes advantages of an emissometry. The method is firstly validated using simulation and then demonstrates its feasibility by retrieving optical constants of a phase change germanium-antimony-tellurium (Ge2Sb2Te5, GST) film. Emittance from samples at 100°C, 200°C, 300°C, and 400°C is measured at θ = 0°, 15°, and 30°. The spectral range of retrieval covers from 4 μm to 18 μm where thermal radiation dominates. The investigated film phase considers amorphous, face-centered cubic (FCC), and hexagonal close packed (HCP). The retrieved constants exhibit temperature and substrate independence, but they show up significant phase reliance.