Malaria, the severe vector-borne disease has embedded serious consequences on mankind since ages, causing deterioration of health, leading to deaths. The causative parasite has a wide distribution aligned from tropical to subtropical regions. Out of all the five species Plasmodium vivax and Plasmodium falciparum have registered about more than 600 million cases worldwide. Throughout the decades, identification of various antimalarial drugs, targets, preventive measures and advancement of vaccines were achieved. The key to executing malaria elimination is the appropriate laboratory diagnosis. Development includes positive scientific judgments for a vaccine, advanced progress of 3 non-pyrethroid insecticides, novel genetic technologies, possibilities to alter malaria parasite mediation by the mosquito, identification of drug resistance markers, initiation of Plasmodium vivax liver stage assessment, perspective to mathematical modeling and screening for active ingredients for drugs and insecticides. Although the last century witnessed many successful programs with scientific progress, however, this was matched with notable obstacles. The mutation in the genes has changed the overall gameplay of eradication. This chapter aims to examine the numerous experimental and theoretical works that have been established in the last two decades along with the ongoing methodologies consisting of detailed explanations necessary for the establishment of new targets and drugs.