Cracking of photonic crystals (PCs) has received considerable attention because of its severe limitation to PC's applications in high-performance optics devices. Although enormous efforts have been focused on the understanding and elimination of the uncontrolled cracks in the self-assembly process, no reliable, low cost and scalable methods have been demonstrated for the fabrication of large (cm or more) crack-free single-crystalline PCs. Herein, we present a facile, reliable approach for the assembly of crack-free single-crystalline PCs on the centimeter scale by the synergistic effects of substrate deformation and monomer infiltration/polymerization. The co-assembling monomer infiltrates and polymerizes in the interstices of the colloidal spheres to form an elastic polymer network, which could lower the tensile stress generated from colloid shrinkage and strengthen the long-range interactions of the colloidal spheres. Otherwise, the timely transformation of the flexible substrate releases the residual stress. This facile, scalable and environment-friendly approach to centimeter-scale crack-free singlecrystalline PCs will not only prompt the practical applications of PCs in high-performance optics devices, but also have great implications for the fabrication of crack-free thin films in other fields, such as wet clays, coating and the ceramic industry.Scheme 1 Fabrication process for crack-free photonic crystals (PCs) by polymerization-assisted assembly on aluminium foil. In the assembly process, the monomer polymerizes and forms an elastic polymer in the interstices of the colloidal spheres. The elastic deformation of the as-formed polymer counteracts the volume change resulted from latex shrinkage and decreases the tensile stress generated. Meanwhile, the substrate deformation releases the residual stress. Both contribute to the achievement of crack-free single-crystalline PCs. Polymerization-assisted assembly and flexible substrate J Zhou et al Figure 1 Scanning electronic microscopy images, ultraviolet-vis spectra of the crack-free PNIPAm/colloid composite opal (a-c) and poly N-isopropyl acrylamide inverse opal (d-f) photonic crystals (PCs) assembled on Al foils. The inset in (a) is a digital photograph of crack-free PC taken at an angle of ca 451 from the sample surface, and the scale bar is 1 cm. The inset in (b) is the magnified SEM image. These SEM images indicate that cracks have been completely eliminated from the PCs. Narrower full-width-at-half-maximum is observed for the crack-free colloidal PCs compared with that of cracked PCs. Polymerization-assisted assembly and flexible substrate J Zhou et al This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc-nd/3.0/ Supplementary Information accompanies the paper on the NPG Asia Materials website (http://www.nature.com/am) Polymerization-assisted assembly and flexible substrate J Zhou et al