In anode‐supported solid oxide fuel cells (SOFCs), air break‐in on the anode side can result in reoxidation of metallic nickel. The volume expansion caused by Ni oxidation generates stresses within the substrate, the anode and the electrolyte. Those stresses exceed the stability of the components, potentially promoting crack growth. Therefore, either the SOFC degrades continuously after each redox‐cycle or the membrane electrode assembly (MEA) fails completely if the electrolyte cracks.
The influence of several reoxidation parameters on the mechanical integrity of Ni–YSZ‐anodes after reoxidation was investigated using different types of samples. All samples were SFEs (substrate–functional layer–electrolytes), consisting of Ni–YSZ‐substrate, Ni–YSZ‐anode and YSZ‐electrolyte. Investigations were carried out on freestanding SFEs and SFEs attached to steel plates (Crofer22APU, Thyssen Krupp V. D. M., Material Data Sheet No. 4046, Edition of December 2006) with a glass sealing.
The results show a big influence of the degree of oxidation, homogeneity of oxidation, the operating temperature and the incident flow on the behaviour and the mechanical integrity of the reoxidised SFEs. The time of oxidation and the gas flow rate were influencing parameters, whereas the influence of the porosity was insignificant. The behaviour of the SFEs upon reoxidation also changes dramatically when comparing freestanding samples with attached samples.