h i g h l i g h t s• Ak/rGO was successfully prepared by co-precipitating and reduction processes.• Fe O C band inhabited the reduction of graphene oxide.• Degradation rate of 2-chlorophenol for Ak/rGO increased 2-5 times than that for Ak.• Higher removal rate is due to the syn- In this work, the composite of reduced graphene oxide and akageneite (Ak/rGO) was synthesised by co-precipitating and reduction processes. The morphological and structural features of the synthesized composites (Ak/rGO) were characterized by XRD, SEM, BET, FTIR, Zeta potential and XPS. The results revealed that (1) beta-FeOOH was successfully loaded on the reduced graphene oxide (rGO); (2) the presence of strong interfacial interactions (Fe O C bonds) between rGO and beta-FeOOH was observed; (3) the reduction of graphene oxide may be inhabited in the formation process of beta-FeOOH, producing rGO sheets rather than rGO sphere. In the heterogeneous Fenton-like reaction, the degradation rate constants of 2-chlorophenol (2-CP) increased 2-5 times after the addition of rGO probably due to the Fe O C bond. The increase of the content of rGO could contribute to the removal of 2-CP, due to the synergy of catalysis and 2-CP adsorption towards Ak/rGO. In this study, the Ak/rGO composite has exhibited great potential and significant prospects for environmental application.