Articles you may be interested inConversion of CH4/CO2 to syngas over Ni-Co/Al2O3-ZrO2 nanocatalyst synthesized via plasma assisted coimpregnation method: Surface properties and catalytic performance
A mathematical model considering mass transfer process at the gas-liquid interface in soil ozonation was developed and validated with laboratory column experiments. Experimental data, specifically, concentration profiles of the organic contaminant and the ozone breakthrough curves, were obtained. In this model, the mass flux of ozone transferred from the gas phase into the liquid phase was described by the two-film theory incorporated with an enhancement factor approach as to account for chemical reactions. With the enhancement factor, the ozone gas transport in the experimental column can be described by an advection-dispersion-reaction equation with pseudo-second-order kinetics in the liquid film. This greatly simplifies the governing equations of the system. Results show that parameters such as degradation yield factor, diffusion coefficients, thickness of liquid film, ozone gas concentration, and gas-liquid interfacial area play an important role on the soil ozonation process. Using the scaled model, important universal dimensionless variables were obtained. The Stanton number (St) is the most important parameter in controlling the performance of system. When St approaches zero, the process is reaction-controlled. Conversely, when St is large, it is convection-controlled. Only when the system is convection-controlled (i.e., large St values) can an increase of ozone flow rate enhance the removal of soil contaminants such as 2-chlorophenol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.