Generally, tool steels for cold work are obtained by rolling and forging processes. They are treated to have a structure conferring to the material a high toughness limit in terms of wear resistance and endurance. The objective of this study is the thermochemical heat treatment of industrial steel blades made of AISI 02 types, intended for polymer crushing. The effects of nitrocarburizing (Tenifer) and gaseous carbonitriding processes on surface characteristics are considered. These surface treatments increase the usefulness of properties, that is, fatigue strength, wear and corrosion resistance of this microalloyed steel. The influence of treatment duration and the thickness of the layers on surface properties are investigated. The analysis and characterization are carried out using physical analysis [optical microscopy, scanning electron microscopy, X-ray diffraction and glow discharge optical emission spectroscopy (GDOES) techniques] and mechanical measurements (microhardness, weight loss and residual stresses) of treated material. The results are intended to contribute in defining and optimizing the adequate choice of treatments for this type of steel in industrial conditions.