All-solid-state lithium batteries (ASSLBs) with nonflammable solid electrolytes (SEs) deliver greatly enhanced safety characteristics. Furthermore, ASSLBs composed of cathodes with high working voltages, such as LiCoO 2 , LiNi x Co y Mn z O 2 (x + y + z = 1, NCM), LiNi x Co y Al z O 2 (x + y + z = 1, NCA), LiMn x Fe y PO 4 (x + y = 1, LMFP), and LiNi 0.5 Mn 1.5 O 4 (LNMO), and a lithium metal anode can achieve comparable or better performance compared with that of LLBs in terms of energy density. Therefore, high-voltage ASSLBs have been regarded as the most promising next-generation batteries. Although significant progress has been achieved in high-voltage ASSLBs research, their development still faces multiple challenges. To facilitate further effective and target-oriented research on highvoltage ASSLBs, a summary of recent research progress is urgently needed. In this review, recent research progress in high-voltage ASSLBs is summarized from the perspectives of SEs modification, interfacial challenges and their corresponding solutions for cathodes, and high-voltage composite cathode design for practical applications. Finally, the authors' perspectives on the state of current ASSLBs research, aiming to propose possible research directions for the future development of high-voltage ASSLBs.