Our brains readily decode human movements, as shown by neural responses to face and body motion. N170 event-related potentials (ERPs) are earlier and larger to mouth opening movements relative to closing in both line-drawn and natural faces, and gaze aversions relative to direct gaze in natural faces (Puce and Perrett, 2003; Puce et al., 2000). Here we extended this work by recording both ERP and oscillatory EEG activity (event-related spectral perturbations, ERSPs) to line-drawn faces depicting eye and mouth movements (Eyes: Direct vs Away; Mouth: Closed vs Open) and non-face motion controls. Neural activity was measured in 2 occipitotemporal clusters of 9 electrodes, one in each hemisphere. Mouth opening generated larger N170s than mouth closing, replicating earlier work. Eye motion elicited robust N170s that did not differ between gaze conditions. Control condition differences were seen, and generated the largest N170. ERSP difference plots across conditions in the occipitotemporal electrode clusters (Eyes: Direct vs Away; Mouth: Closed vs Open) showed statistically significant differences in beta and gamma bands for gaze direction changes and mouth opening at similar post-stimulus times and frequencies. In contrast, control stimuli showed activity in the gamma band with a completely different time profile and hemispheric distribution to facial stimuli.
ERSP plots were generated in two 9 electrode clusters centered on central sites, C3 and C4. In the left cluster for all stimulus conditions, broadband beta suppression persisted from about 250 ms post-motion onset. In the right cluster, beta suppression was seen for control conditions only. Statistically significant differences between conditions were confined between 4 – 15 Hz, unlike occipitotemporal sites where differences occurred at much higher frequencies (high beta/gamma).
Our data indicate that N170 amplitude is sensitive to the amount of movement in the visual field, independent of stimulus type. In contrast, occipitotemporal beta and gamma activity differentiate between facial and non-facial motion. Context and stimulus configuration likely play a role in shaping neural responses, based on comparisons of the current data to previously reported studies. Broadband suppression of central beta activity, and significant low frequency differences were likely stimulus driven and not contingent on behavioral responses.