The syringopeptins are a group of antimicrobial cyclic lipodepsipeptides produced by several plant-associated pseudomonads. A novel syringopeptin, SP508, was shown to be produced as two homologs (A and B) by Pseudomonas syringae pv. lachrymans strain 508 from apple and to structurally resemble syringopeptin SP22. SP508 differed from SP22 and other syringopeptins by having three instead of four ␣,-unsaturated amino acids and a longer -hydroxy acyl chain. Both SP508 and SP22 displayed growth-inhibitory activities against Mycobacterium smegmatis, other gram-positive bacteria, and yeasts but not against gram-negative bacteria. Structure-activity analyses of the SP508 and SP22 homologs indicated chemical structural features that lead to enhanced antimycobacterial activity by these pseudomonad cyclic lipodepsipeptides.Syringopeptins (SPs) are bacterial secondary metabolites belonging to a class of cyclic lipodepsipeptides produced by certain pathovars of the plant bacterium Pseudomonas syringae (1,2,25,36). Their peptide portions contain either 22 (SP22) or 25 (SP25) amino acids that are predominantly hydrophobic, valine and alanine in particular. About 70% of the chiral residues are of the D configuration, and there are four ␣,-unsaturated and two 2,4-diaminobutyric acid residues (2,17,21,30). An N-terminal residue dehydroaminobutyric acid (Dhb) is N acylated by a 3-hydroxylated fatty acid chain containing either 10 or 12 carbon atoms; these two types of chains are designated A and B homologs and are typically the more abundant and less abundant forms, respectively. The C-terminal carboxyl group is esterified by the hydroxyl group of the allo-Thr residue positioned at the distance of 7 residues, thus forming an eightmembered lactone macrocycle. So far, two SP25 and three SP22 forms have been identified. SP25 is produced by P. syringae pv. syringae strains that have been isolated from infected millet (B359), citrus (B427) (2), and wheat (M1) (1) as well as from the wheat pathogen P. syringae pv. atrofaciens (36). An isoform differing in the C-terminal residue, SP25-Phe, was detected in a laurel-infecting strain (30). SP22 is produced by a P. syringae pv. syringae strain isolated from pear (B301) (2), and variants are produced by P. syringae pv. syringae strains from sugar cane (SP[SC]) (21) and bean (SPPhv) (17). Each SP-producing P. syringae strain produces one type of SP together with a smaller, nine-amino-acid-containing cyclic lipodepsipeptide-either syringomycin (13, 32), syringotoxin (3), syringostatin (13), or pseudomycin (5).The SPs are produced in infected plant tissues (12, 15), and they play roles as virulence factors in plant diseases (31). The phytotoxic physiological effects of the SPs were demonstrated with isolated plant mitochondria (10) and tobacco protoplasts (18). Lipid bilayer studies have revealed that the probable mechanism of action involves insertion into target membranes with formation of ion channels and consequent ion imbalances that lead to cell death (9, 18). In addition to their phyto...