Many animals and plants possess symbiotic microorganisms inside their body, wherein intimate interactions occur between the partners. The Insecta, often rated as the most diverse animal group, show various types of endosymbiotic associations, ranging from obligate mutualism to facultative parasitism. Although technological advancements in culture-independent molecular techniques, such as quantitative PCR, molecular phylogeny and in situ hybridization, as well as genomic and metagenomic analyses, have allowed us to directly observe endosymbiotic associations in vivo, the molecular mechanisms underlying insect-microbe interactions are not well understood, because most of these insect endosymbionts are neither culturable nor genetically manipulatable. However, recent studies have succeeded in the isolation of several facultative symbionts by using insect cell lines or axenic media, revolutionizing studies of insect endosymbiosis. This article reviews the amazing diversity of bacterial endosymbiosis in insects, focusing on several model systems with culturable endosymbionts, which provide a new perspective towards understanding how intimate symbiotic associations may have evolved and how they are maintained within insects.