Besides initiation of tumor-specific T cell immunity, dendritic cells (DCs) are endowed with tumoricidal activity. Previously, we showed that monocyte-derived DCs of high-grade glioma patients generated in the presence of interferon alpha (IFNα) (IFN-DCs) have impaired cytotoxic activity against tumor necrosis factor alpha (TNFα)-sensitive HEp-2 tumor cells. Herein, we demonstrate that decreased transmembrane TNFα (tmTNFα) expression, but not soluble TNFα (sTNFα) production by high-grade glioma patient IFN-DCs, determines the defective tumoricidal activity against TNFα-sensitive HEp-2 cells. Blocking TNFα-converting enzyme or stimulation of patient IFN-DCs with rIL-2 or dsDNA enhances tmTNFα expression on IFN-DCs and significantly increases their cytotoxicity. Decreased tmTNFα expression on patient IFN-DCs is not caused by downregulation of pNFκB. Neither rIL-2 nor dsDNA upregulates tmTNFα expression on patient IFN-DCs via an increase of pNFκB. The current study shows an important role of tmTNFα as mediator of IFN-DC tumoricidal activity and as molecular target for the restoration of defective DC killer activity in high-grade glioma patients.