The aim of this study was to evaluate the cytotoxicity and mineralization potential of four calcium silicate-based cements on human gingiva-derived stem cells (GDSCs). The materials evaluated in the present study were ProRoot MTA (Dentsply Tulsa Dental Specialties), Biodentine (Septodont), Endocem Zr (Maruchi), and RetroMTA (BioMTA). Experimental disks of 6 mm in diameter and 3 mm in height were produced and placed in a 100% humidified atmosphere for 48 h to set. We evaluated the cytotoxic effects of the cements using methyl-thiazoldiphenyl-tetrazolium (MTT) and live/dead staining assays. We used a scratch wound healing assay to evaluate cell migratory ability. Mineralization potential was determined with an Alizarin red S (ARS) staining assay. In the MTT assay, no significant differences were found among the ProRoot MTA, Biodentine, and control groups during the test period (p > 0.05). The Endocem Zr and RetroMTA groups showed relatively lower cell viability than the control group at day 7 (p < 0.05). In the wound healing assay, no significant differences were found among the ProRoot MTA, Biodentine, Endocem Zr, and control groups during the test period (p > 0.05). The RetroMTA group had slower cell migration compared to the control group at days 3 and 4 (p < 0.05). In the ARS assay, the ProRoot MTA, Biodentine, and RetroMTA groups exhibited a significant increase in the formation of mineralized nodules compared to the Endocem Zr and control groups on day 21 (p < 0.05). In conclusion, the four calcium silicate-based cements evaluated in the present study exhibited good biological properties on GDSCs. ProRoot MTA, Biodentine, and RetroMTA showed higher mineralization potential than the Endocem Zr and control groups.