In the temperate region, most common mycotoxins are members of fusariotoxins. It often happens that food and forage are contaminated with two or more fusariotoxins at the same time. Effects of co-contamination are poorly documented, especially in the field of reproduction. The aim of our study was to assess the combined effect of the two common fusariotoxins, T-2 toxin (T-2) and Fumonisin B1 on early mouse embryo development in vitro. Embryo culture media contained either (1) 0.5 ng/ml T-2; 1, 2, or 10 ng/ml FB1 (group A, B, and C, respectively); or (2) 0.5 ng/ml T-2 and 1, 2, or 10 ng/ml FB1 (group TA, TB, and TC, respectively). Developmental rate, blastocoel expansion, cell number, and micronucleus rate were measured following 96 h culture. Although the developmental rate was similar to the control group (86.43% vs. 83.33, 78.79, 85.98, and 86.67%, respectively) in the case of single toxin treatments, the combined treatments induced significant decreases (14.5, 33.6, and 22.8% in TA, TB, and TC, respectively). The proportion of late blastocysts was lower in all treatments compared to control (83.6% vs. 0-83.6%). Combined treatment resulted in a significantly lower proportion of late blastocysts (25% in TA and 0% in TB and TC). Cell numbers decreased in all toxin-treated groups with a higher rate after combined treatments. No differences were detected in the micronucleus rate in the single or combined treatments compared to control. Our study shows that T-2 and FB1 toxins do not necessarily decrease the developmental rate, but co-contamination results in a significantly lower blastocyst rate and disturbs the blastocoel expansion as well. One possible explanation of this observation could be that the presence of two mycotoxins in the culture media intensifies their negative effects. All toxin treatments decreased the cell number in the blastocysts and this negative effect was more expressed after combined treatment.