In recent years, 4D flow MRI has become increasingly important in clinical applications for the blood vessels in the whole body, heart, and cerebrospinal fluid. 4D flow MRI has advantages over 2D cine phasecontrast (PC) MRI in that any targeted area of interest can be analyzed post-hoc, but there are some factors to be considered, such as ensuring measurement accuracy, a long imaging time and post-processing complexity, and interobserver variability.Due to the partial volume phenomenon caused by low spatial and temporal resolutions, the accuracy of flow measurement in 4D flow MRI is reduced. For spatial resolution, it is recommended to include at least four voxels in the vessel of interest, and if possible, six voxels. In large vessels such as the aorta, large voxels can be secured and SNR can be maintained, but in small cerebral vessels, SNR is reduced, resulting in reduced accuracy. A temporal resolution of less than 40 ms is recommended. The velocity-to-noise ratio (VNR) of low-velocity blood flow is low, resulting in poor measurement accuracy. The use of dual velocity encoding (VENC) or multi-VENC is recommended to avoid velocity wrap around and to increase VNR. In order to maintain sufficient spatio-temporal resolution, a longer imaging time is required, leading to potential patient movement during examination and a corresponding decrease in measurement accuracy.For the clinical application of new technologies, including various acceleration techniques, in vitro and in vivo accuracy verification based on existing accuracy-validated 2D cine PC MRI and 4D flow MRI, as well as accuracy verification on the conservation of mass' principle, should be performed, and intraobserver repeatability, interobserver reproducibility, and test-retest reproducibility should be checked.