Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5% and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities.
For the first time, inter-operator dependence of MRI based computational fluid dynamics (CFD) modeling of cerebrospinal fluid (CSF) in the cervical spinal subarachnoid space (SSS) is evaluated. In vivo MRI flow measurements and anatomy MRI images were obtained at the cervico-medullary junction of a healthy subject and a Chiari I malformation patient. 3D anatomies of the SSS were reconstructed by manual segmentation by four independent operators for both cases. CFD results were compared at nine axial locations along the SSS in terms of hydrodynamic and geometric parameters. Intraclass correlation (ICC) assessed the inter-operator agreement for each parameter over the axial locations and coefficient of variance (CV) compared the percentage of variance for each parameter between the operators. Greater operator dependence was found for the patient (0.19 0.78). For the healthy subject, hydraulic diameter and Womersley number had the least variance (CV= ~2%). For the patient, peak diastolic velocity and Reynolds number had the smallest variance (CV= ~3%). These results show a high degree of inter-operator reliability for MRI-based CFD simulations of CSF flow in the cervical spine for healthy subjects and a lower degree of reliability for patients with Type I Chiari malformation.
CSF hydrodynamics are thought to be altered in craniospinal disorders such as Chiari I malformation. MRI scanning techniques and protocols can be used to quantify CSF flow alterations in disease states. The provided in vitro models can be used to test the reliability of these protocols across MRI scanner manufacturers and machines.
Background
Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed.
Methods
An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model.
Results
Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively).
Conclusion
Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.