The pathogenicity and cell tropism of mouse hepatitis virus (MHV-JHM-strain) in the developing mouse (Balb/c) and rat (Wistar and Lewis) brain were analysed. Intracranial infection of Balb/c mice at postnatal day 5 induced a lethal encephalitis in all animals. Of Wistar rats infected at day 2 or 5 after birth, 30 to 70%, respectively, survived. The distribution of viral antigen was studied in frozen brain sections of animals that died after infection; astrocytes were found to be the major virus-infected cell type throughout the central nervous system. More than 75% of the surviving rat pups developed paralysis, but viral antigen was detected in only few brain cells and not in astrocytes. The cell tropism of MHV-JHM was examined further in virus-infected glial cell cultures derived from brains of rats or mice. In the glial cultures derived from Wistar rats, only oligodendrocytes were infected, whereas in cultures derived from mouse or Lewis rat brain viral antigen was detected in both astrocytes and oligodendrocytes. Infection of astrocytes led to the formation of syncytia and degradation of the cytoskeleton. Infected rat oligodendrocytes gradually disappeared from the cultures because of cell death. These phenomena indicate that, besides an indirect autoimmune response triggered by infected astrocytes, direct virus-induced injury to astrocytes or to oligodendrocytes can have a dominant role in the neuropathogenicity of mouse hepatitis virus. The present results underscore the importance of species and developmental stage of experimental animals in the neurotropism and pathogenicity of MHV-JHM.