Retinal vascular diseases are important causes of vision loss. A detailed evaluation of the vascular abnormalities facilitates diagnosis and treatment in these diseases. Optical coherence tomography (OCT) angiography using the highly efficient split-spectrum amplitude decorrelation angiography algorithm offers an alternative to conventional dye-based retinal angiography. OCT angiography has several advantages, including 3D visualization of retinal and choroidal circulations (including the choriocapillaris) and avoidance of dye injection-related complications. Results from six illustrative cases are reported. In diabetic retinopathy, OCT angiography can detect neovascularization and quantify ischemia. In age-related macular degeneration, choroidal neovascularization can be observed without the obscuration of details caused by dye leakage in conventional angiography. Choriocapillaris dysfunction can be detected in the nonneovascular form of the disease, furthering our understanding of pathogenesis. In choroideremia, OCT's ability to show choroidal and retinal vascular dysfunction separately may be valuable in predicting progression and assessing treatment response. OCT angiography shows promise as a noninvasive alternative to dye-based angiography for highly detailed, in vivo, 3D, quantitative evaluation of retinal vascular abnormalities.optical coherence tomography angiography | ophthalmic imaging | ocular circulation O ptical coherence tomography (OCT) has become the most commonly used imaging modality in ophthalmology. It provides cross-sectional and 3D imaging of the retina and optic nerve head with micrometer-scale depth resolution. Structural OCT enhances the clinician's ability to detect and monitor fluid exudation associated with retinal vascular diseases. Whereas anatomical alterations that impact vision are readily visible, structural OCT has a limited ability to image the retinal or choroidal vasculatures. Furthermore, it is unable to directly detect capillary dropout or pathologic new vessel growth (neovascularization) that are the major vascular changes associated with two of the leading causes of blindness, age-related macular degeneration (AMD) and diabetic retinopathy (1). To visualize these changes, traditional i.v. contrast dye-based angiography techniques are currently used.Fluorescein dye is primarily used to visualize the retinal vasculature. A separate dye, indocyanine green (ICG), is necessary to evaluate the choroidal vasculature. Both fluorescein angiography (FA) and ICG angiography require i.v. injection, which is time consuming, and which can cause nausea, vomiting, and, rarely, anaphylaxis (2). Dye leakage or staining provides information regarding vascular incompetence (e.g., from abnormal capillary growth), but it also obscures the image and blurs the boundaries of neovascularization. Additionally, conventional angiography is 2D, which makes it difficult to distinguish vascular abnormalities within different layers. Therefore, it is desirable to develop a no-injection, dye-free method...