Purpose of review
A major hurdle hindering more widespread application of reconstructive transplantation is the very limited cold ischemia time (CIT) of vascularized composite allografts (VCAs). In this review, we discuss cutting edge machine perfusion protocols and preservation strategies to overcome this limitation.
Recent findings
Several preclinical machine perfusion studies have demonstrated the multifactorial utility of this technology to extend preservation windows, assess graft viability prior to transplantation and salvage damaged tissue, yet there are currently no clinically approved machine perfusion protocols for reconstructive transplantation. Thus, machine perfusion remains an open challenge in VCA due to the complexity of the various tissue types. In addition, multiple other promising avenues to prolong preservation of composite allografts have emerged. These include cryopreservation, high subzero preservation, vitrification and nanowarming. Despite several studies demonstrating extended preservation windows, there are several limitations that must be overcome prior to clinical translation. As both machine perfusion and subzero preservation protocols have rapidly advanced in the past few years, special consideration should be given to their potential complementary utilization.
Summary
Current and emerging machine perfusion and preservation technologies in VCA have great promise to transform the field of reconstructive transplantation, as every extra hour of CIT helps ease the complexities of the peri-transplant workflow. Amongst the many advantages, longer preservation windows may allow for elective procedures, improved matching, establishment of novel immunomodulatory protocols and global transport of grafts, ultimately enabling us the ability to offer this life changing procedure to more patients.