Erythrocyte glutathione depletion has been linked to hemolysis and oxidative stress. Glutamine plays an additional antioxidant role through preservation of intracellular nicotinamide adenine dinucleotide phosphate (NADPH) levels, required for glutathione recycling. Decreased nitric oxide (NO) bioavailability, which occurs in the setting of increased hemolysis and oxidative stress, contributes to the pathogenesis of pulmonary hypertension (PH) in sickle cell disease (SCD). We hypothesized that altered glutathione and glutamine metabolism play a role in this process. Total glutathione (and its precursors) and glutamine were assayed in plasma and erythrocytes of 40 SCD patients and 9 healthy volunteers. Erythrocyte total glutathione and glutamine levels were significantly lower in SCD patients than in healthy volunteers. Glutamine depletion was independently associated with PH, defined as a tricuspid regurgitant jet velocity (TRV) of at least 2.5 m/s. The ratio of erythrocyte glutamine:glutamate correlated inversely to TRV (r ؍ ؊0.62, P < .001), plasma arginase concentration (r ؍ ؊0.45, P ؍ .002), and plasma-free hemoglobin level (r ؍ ؊0.41, P ؍ .01), linking erythrocyte glutamine depletion to dysregulation of the arginine-NO pathway and increased hemolytic rate. Decreased erythrocyte glutathione and glutamine levels contribute to alterations in the erythrocyte redox environment, which may compromise erythrocyte integrity, contribute to hemolysis, and play a role in the pathogenesis of PH of SCD.
IntroductionThe erythrocyte redox environment may contribute to the increased oxidative stress, hemolysis, and decreased nitric oxide (NO) bioavailability observed in pulmonary hypertension (PH), a common complication of hemolytic disorders. Reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is the most abundant low-molecular weight thiol 1 and the principal thiol redox buffer in erythrocytes. 2,3 The red blood cell contributes up to 10% of whole-body GSH synthesis in humans. [4][5][6] In addition to its role as a critical antioxidant, GSH possesses diverse biological functions involved in detoxification, cell proliferation and apoptosis, redox signaling, gene expression, protein glutathionylation, cytokine production, the immune response, mitochondrial function, and integrity as well as NO metabolism. 7,8 Glutathione is synthesized from glutamate, cysteine, and glycine via reactions catalyzed by 2 cytosolic enzymes, gammaglutamylcysteine ligase and GSH synthetase. The intracellular GSH concentration is the final result of a dynamic balance between the rate of GSH synthesis and the combined rate of intracellular GSH consumption and efflux. GSH is readily oxidized to glutathione disulfide (GSSG) by free radicals and reactive oxygen and nitrogen species. GSSG efflux from cells contributes to a net loss of intracellular GSH. 1 Due to its high intracellular concentrations, GSH variations in oxidation states can significantly modify the redox environment of red blood cells. Within the erythrocyte, GSH may...