Graphene oxides (GO) are attracting much attention in the diagnosis and therapy of the subcutaneous tumor as a novel biomaterial, but its diagnosis to tissue dysfunction is yet to be found. Here, a novel application of GO for diagnosis of renal dysfunction via contrast‐enhanced computed tomography (CT) is proposed. In order to serve as contrast‐enhanced agent, Ag nanoparticles (AgNPs) are composited on the surface of GO to promote its X‐ray absorption, and then simvastatin is coinjected for eliminating in vivo toxicity induced by AgNPs. It is found that GO/AgNPs can enhance the imaging of CT into the lung, liver, and kidney of mice for a long circulation time (≈24 h) and a safety profile in vivo in the presence of simvastatin. Interestingly, the lower dose of GO/AgNPs (≈0.5 mg per kg bw) shows an excellent performance for CT imaging of renal perfusion, and visually exhibits the right renal dysfunction in model mice. Hence, this work suggests that graphene nanoparticles will play a vital role for the future medical translational development including drug carrier, biosensing, and disease therapy.