The link between the scaling function extracted from the analysis of (e, e ) cross sections and the spectral function/momentum distribution in nuclei is revisited. Several descriptions of the spectral function based on the independent particle model are employed, together with the inclusion of nucleon correlations, and effects of the energy dependence arising from the width of the hole states are investigated. Although some of these approaches provide rough overall agreement with data, they are not found to be capable of reproducing one of the distinctive features of the experimental scaling function, namely its asymmetry. However, the addition of final-state interactions, incorporated in the present study using either relativistic mean-field theory or via a complex optical potential, does lead to asymmetric scaling functions in accordance with data. The present analysis seems to indicate that final-state interactions constitute an essential ingredient and are required to provide a proper description of the experimental scaling function.