This paper focuses in the influence of halogen atoms in the design and structural control of the crystal packing of Group VIII halogenated metallocenes. The study is based on the present knowledge on new types of intermolecular contacts such as halogen (X⋯X, C-X⋯H, C-X⋯π), π⋯π, and C-H⋯π interactions. The presence of novel C-H⋯M interactions is also discussed. Crystal packings are analysed after database search on this family of compounds. Results are supported by ab initio calculations on electrostatic charge distributions; Hirshfeld analysis is also used to predict the types of contacts to be expected in the molecules. Special attention is given to the competition among hydrogen and halogen interactions, mainly its influence on the nature and geometric orientations of the different supramolecular motifs. Supramolecular arrangements of halogenated metallocenes and Group IV di-halogenated bent metallocenes are also compared and discussed. Analysis supports halogen bonds as the predominant interactions in defining the crystal packing of bromine and iodine 1,1′-halometallocenes.