The digital revolution and extended use of modern digital technologies define the intensification of formation processes and further development of industrial ecosystems as stable geographically established networks of interconnected diverse enterprises and institutions, that are based on certain manufacturing technologies. At the same time, the location of industrial ecosystems is changed, which manifests itself in contradictory processes of reshoring and nearshoring, deepening their specialization, as the result of which in various regions of the world existing industrial ecosystems are transforming and new ones with different environmental influence are forming. Therefore, the objective of this paper is to educe current peculiarities of their evolution in terms of digitalization in the context of sustainable development. Every industrial ecosystem is unique, but it also has some certain similarities with other ecosystems, giving objective reasons for distinguishing their characteristic types. This study carries out the grouping of national economies (68 countries) by the size of industrial ecosystems (value added), their labor intensiveness, knowledge intensiveness and environmental friendliness (CO2 emissions). According to results of the cluster analysis, it is found that the absolute leadership by qualitative characteristics, primarily in terms of labor productivity and R&D costs, belongs to industrial ecosystems of advanced countries in Europe, Asia-Pacific region and the United States. With regard to Ukraine, its industrial ecosystem is classified to the cluster of countries that are "catching up" and characterized by worse indicators, including in the framework of sustainable development. To assess the environmental friendliness of industrial ecosystems, it is suggested to use the indicator of a normalized area of an ecological footprint that characterizes its size, which accrues to consumption of 1 ton of coal. Calculations of this indicator show that the increase of world coal consumption in recent decades is followed by a decrease of a normalized area of the ecological footprint as a result of progress in the development of "clean" manufacturing technologies and consumption of this energy source. However, the situation is different in various clusters of industrial ecosystems. With the difference of volume of GDP per capita, the normalized ecological footprint of developing countries is almost 3 times higher than in advanced ones. Namely, the life support in industrial ecosystems of developing countries (including Ukraine) per 1 dollar of income is associated with a significantly higher normalized ecological footprint. The Ukrainian national industrial ecosystem is currently characterized by the low technical and technological level of production and high normalized coal consumption with corresponding negative consequences for the environment. To ensure its transition to a sustainable development trajectory, it is necessary to create institutions that would stimulate a cyclical model of industrial behavior at the state level, as well as the development and dissemination of new digital technologies in industrial production and energy sector that can reduce the ecological footprint.