Interferenceless coded aperture correlation holography (I-COACH) is an incoherent digital holography technique for imaging 3D objects without two-wave interference. In I-COACH, the object beam is modulated by a pseudorandom coded phase mask (CPM) and propagates to the camera where its intensity pattern is recorded. The image of the object is reconstructed by a cross-correlation of the object intensity pattern with a point intensity response of the system, whereas the light from both the object and the point, are modulated by the same CPM. In order to recover the image of the object without bias level and background noise, multiple intensity recordings are necessary for both objects as well as the point object, which in turn significantly reduces the time resolution of imaging. In this study, a non-linear reconstruction technique is developed to reconstruct the image of the object with only a single camera shot. Furthermore, the proposed technique is adaptive to different experimental conditions in the sense of finding different optimal parameters for each experiment. The new method has been implemented on a regular I-COACH system in both transmission as well as reflection illumination modes.