No abstract
First indigenously built tokamak ADITYA, operated over 2 decades with circular poloidal limiter has been upgraded to a tokamak named ADITYA Upgrade for the purpose having shape plasma operation with open divertor geometry. Experiment research in ADITYA-U has made significant progress, since last FEC 2016. After installation of PFC and standard tokamak diagnostics, the Phase-I plasma operations were conducted from December 2016 with graphite toroidal belt limiter. Purely Ohmic discharges in circular plasmas supported by Filament pre-ionization was obtained. The plasma parameters, Ip ~ 80-95 kA, duration ~ 80-180 ms with toroidal field (max.) ~ 1T and chord-averaged electron density ~ 2.5 x 10^19 m^-3 has been achieved. Being a medium sized tokamak, runaway electron (RE) generation, transport and mitigation experiments have always been one of the prime focus of ADITYA-U. MHD activities and density enhancement with H2 gas puffing studied. The Phase-I operation was completed in March 2017. The Phase-II operation preparation in ADITYA-U includes calibration of magnetic diagnostics followed by commissioning of major diagnostics and installation of baking system. After repeated cycles of baking the vacuum vessel up to ~ 130°C, the Phase-II operations resumed from February 2018 and are continuing to achieve plasma parameters close to the design parameters of circular limiter plasmas using real time plasma position control. Hydrogen gas breakdown was observed in more than ~2000 discharge including Phase-I and Phase-II operation without a single failure. Several experiments, including the primary RE control with lower E/P operation and secondary RE control with fuelling of Supersonic Molecular Beam Injection as well as sonic H2 gas puffing during current flat-top and Neon gas puffing for better plasma confinement are undergoing. The dismantling of ADITYA and reassembling of ADITYA-U along with experimental results of Phase-I and Phase-II operations from ADITYA-U will be discussed.
We present a lensless, interferenceless incoherent digital holography technique based on the principle of coded aperture correlation holography. The acquired digital hologram by this technique contains a three-dimensional image of some observed scene. Light diffracted by a point object (pinhole) is modulated using a random-like coded phase mask (CPM) and the intensity pattern is recorded and composed as a point spread hologram (PSH). A library of PSHs is created using the same CPM by moving the pinhole to all possible axial locations. Intensity diffracted through the same CPM from an object placed within the axial limits of the PSH library is recorded by a digital camera. The recorded intensity this time is composed as the object hologram. The image of the object at any axial plane is reconstructed by cross-correlating the object hologram with the corresponding component of the PSH library. The reconstruction noise attached to the image is suppressed by various methods. The reconstruction results of multiplane and thick objects by this technique are compared with regular lens-based imaging.
Lithiumization of the vacuum vessel wall of the Aditya tokamak using a lithium rod exposed to glow discharge cleaning plasma has been done to understand its effect on plasma performance. After the Li-coating, an increment of ∼100 eV in plasma electron temperature has been observed in most of the discharges compared to discharges without Li coating, and the shot reproducibility is considerably improved. Detailed studies of impurity behaviour and hydrogen recycling are made in the Li coated discharges by observing spectral lines of hydrogen, carbon, and oxygen in the visible region using optical fiber, an interference filter, and PMT based systems. A large reduction in O I signal (up to ∼ 40% to 50%) and a 20% to 30% decrease of Hα signal indicate significant reduction of wall recycling. Furthermore, VUV emissions from O V and Fe XV monitored by a grazing incidence monochromator also show the reduction. Lower Fe XV emission indicates the declined impurity penetration to the core plasma in the Li coated discharges. Significant increase of the particle and energy confinement times and the reduction of Z eff of the plasma certainly indicate the improved plasma parameters in the Aditya tokamak after lithium wall conditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.