IntroductionShiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that cause food-borne diseases in humans. Cattle and derived foodstuffs play a known role as reservoir and vehicles, respectively. In Uruguay, information about the characteristics of circulating STEC in meat productive chain is scarce. The aim was to characterize STEC strains recovered from 800 bovine carcasses of different slaughterhouses.MethodsTo characterize STEC strains we use classical microbiological procedures, Whole Genome Sequencing (WGS) and FAO/WHO risk criteria.ResultsWe analyzed 39 STEC isolated from 20 establishments. They belonged to 21 different O-groups and 13 different H-types. Only one O157:H7 strain was characterized and the serotypes O130:H11(6), O174:H28(5), and O22:H8(5) prevailed. One strain showed resistance in vitro to tetracycline and genes for doxycycline, sulfonamide, streptomycin and fosfomycin resistance were detected. Thirty-three strains (84.6%) carried the subtypes Stx2a, Stx2c, or Stx2d. The gene eae was detected only in two strains (O157:H7, O182:H25). The most prevalent virulence genes found were lpfA (n = 38), ompA (n = 39), ompT (n = 39), iss (n = 38), and terC (n = 39). Within the set of STEC analyzed, the majority (81.5%) belonged to FAO/WHO’s risk classification levels 4 and 5 (lower risk). Besides, we detected STEC serotypes O22:H8, O113:H21, O130:H11, and O174:H21 belonged to level risk 2 associate with diarrhea, hemorrhagic colitis or Hemolytic-Uremic Syndrome (HUS). The only O157:H7 strain analyzed belonged to ST11. Thirty-eight isolates belonged to the Clermont type B1, while the O157:H7 was classified as E.DiscussionThe analyzed STEC showed high genomic diversity and harbor several genetic determinants associated with virulence, underlining the important role of WGS for a complete typing. In this set we did not detect non-O157 STEC previously isolated from local HUS cases. However, when interpreting this findings, the low number of isolates analyzed and some methodological limitations must be taken into account. Obtained data suggest that cattle constitute a local reservoir of non-O157 serotypes associated with severe diseases. Other studies are needed to assess the role of the local meat chain in the spread of STEC, especially those associated with severe diseases in humans.