Artificial Intelligence (AI) has great potential to solve a wide spectrum of real-world business problems, but the lack of trust from the perspective of potential users, investors, and other stakeholders towards AI is preventing them from adoption. To build and strengthen trust in AI, technology creators should ensure that the data which is acquired, processed and being fed into the algorithm is accurate, reliable, consistent, relevant, bias-free, and complete. Similarly, the algorithm that is selected, trained, and tested should be explainable, interpretable, transparent, bias-free, reliable, and useful. Most importantly, the algorithm and its outcomes should be auditable and properly governed.