The synapses formed by the mossy fiber (MF) axons of hippocampal dentate gyrus granule neurons onto CA3 pyramidal neurons exhibit an intriguing form of experience-dependent synaptic plasticity that is induced and expressed presynaptically. In contrast to most other CNS synapses, long-term potentiation (LTP) at the MF-CA3 synapse is readily induced even during blockade of postsynaptic glutamate receptors. Furthermore, blocking voltage-gated Ca 2ϩ channels prevents MF-LTP, supporting an involvement of presynaptic Ca 2ϩ signaling via voltage-gated Ca 2ϩ channels in MF-LTP induction. We examined the contribution of activity in both dentate granule cell somata and MF terminals to MF-LTP. We found that the induction of stable MF-LTP requires tetanization-induced action potentials not only at MF boutons, but also at dentate granule cell somata. Similarly, blocking Ca 2ϩ influx via voltage-gated Ca 2ϩ channels only at the granule cell soma was sufficient to disrupt MF-LTP. Finally, blocking protein synthesis or blocking fast axonal transport mechanisms via disruption of axonal tubulin filaments resulted in decremental MF-LTP.Collectively, these data suggest that-in addition to Ca 2ϩ influx at the MF terminals-induction of MF synaptic plasticity requires action potential-dependent Ca 2ϩ signaling at granule cell somata, protein synthesis, and fast axonal transport along MFs. A parsimonious interpretation of these results is that somatic activity triggers protein synthesis at the soma; newly synthesized proteins are then transported to MF terminals, where they contribute to the stabilization of MF-LTP. Finally, the present data imply that synaptic plasticity at the MF-CA3 synapse can be affected by local modulation of somatic and presynaptic Ca 2ϩ channel activity.