Preeclampsia (PE), a hypertensive disorder of pregnancy, is hypothesized to be associated with, if not mechanistically related to abnormal placental function. However, the exact mechanisms regulating the pathogenesis of PE remain unclear. While many studies have investigated changes in gene expression in the PE placenta, the role of epigenetics in PE associated placental dysfunction remains unclear. Using the genome-wide Illumina Infinium Methylation 450 BeadChip array, we analyzed gene-specific alterations in DNA methylation in placental biopsies collected from normal pregnant women delivering at term (n = 14), with term PE (≥37 weeks; n = 19) or with preterm PE (<37 weeks, n = 12). Of the 485,582 gene loci on the array, compared to controls, 229 loci were differentially methylated in PE placentas and 3411 loci were differentially methylated in preterm PE (step up p-value <0.05 and >5% methylation difference). Functional annotation of the differentially methylated genes in preterm PE placentas revealed a 32 gene cluster in the cadherin and cell adhesion functional groups (Benjamini p<0.00001). Hypermethylation of CDH11 (p = 0.0143), COL5A1 (p = 0.0127) and TNF (p = 0.0098) and hypomethylation of NCAM1 (p = 0.0158) was associated with altered mRNA expression in preterm PE placentas. Demethylation of first trimester extravillous trophoblast cells resulted in altered CDH11 (p = 0.0087), COL5A1 (p = 0.0043), NCAM1 (p = 0.0260) and TNF (p = 0.0022) mRNA expression. These studies demonstrate aberrant methylation, correlating with disease severity, in PE placentas. Furthermore, we provide evidence that disruption of gene-specific methylation in preterm PE placentas and first trimester trophoblasts is significantly associated with altered gene expression demonstrating that epigenetic modifications early in pregnancy can have effects on trophoblast function contributing to PE.