Aeroponics is a soilless cultivation technology integrating plant nutrition, physiology, ecological environment, agricultural automation and horticulture. One of the soilless advantages is that a non-invasive observation of the root system growth development is possible. This paper presents a vegetative growth evaluation of lettuce plants in an aeroponic chamber, where root and leaf development parameters were measured in three lettuce crops through plant images captured in the visible (VIS), near infrared (NIR) and far infrared (IR) spectra. A total of ninety lettuce plants was transplanted for this research, thirty for each experimental crop. The three lettuce crops were grown for thirty days in an aeroponic growth plant chamber inside a greenhouse under favorable conditions. The morphometric and thermal parameters of the lettuce roots (perimeter, area, length and average temperature) and leaves (perimeter, area and average temperature) were evaluated for each crop along ten image-capturing sessions through an implemented multispectral vision system. The average values of the root and leaf morphometric parameters obtained with the implemented imaging system along the lettuce growing period were statistically analyzed with Tukey testing. The obtained analysis results show no significant difference for a value of p ≤ 0.05 in 86.67%. Hence, the morphometric parameters can be used to characterize the vegetative lettuce growth in aeroponic crops. On the other hand, a correlation analysis was conducted between the thermal parameters computed with the root and leaf thermal image processing and the measured ambient temperature. The results were: R = 0.945 for correlation between ambient and leaf temperature, R = 0.963 for correlation between ambient and root temperature and R = 0.977 for leaf and root temperature. According to these results, the plant temperature is highly correlated with the ambient temperature in an aeroponic crop. The obtained study results suggest that multispectral image processing is a useful non-invasive tool to estimate the vegetative root and leaf growth parameters of aeroponic lettuce plants in a greenhouse.