Despite the availability of mobile positioning technologies and scientists' interests in tracking, modelling and predicting the movements of individuals and populations, these technologies are seldom efficiently used. The continuous changes in mobile positioning and other sensor technologies overburden scientists who are interested in data collection with the task of developing, implementing and testing tracking algorithms and their efficiency in terms of battery consumption. To this extent, this article proposes an adaptive, battery conscious tracking algorithm that collects trajectory data fused with accelerometer data and presents Mobility Collector, which is a prototype platform that, using the tracking algorithm, can produce highly configurable, off-the-shelf, multi-user tracking systems suitable for research purposes. The applicability of the tracking system is tested within the transport science domain by collecting labelled movement traces and related motion data, i.e. accelerometer data and derived information (number of steps and other useful movement features based on temporal aggregates of the raw readings) to develop and evaluate a method that automatically classifies the transportation mode of users with a 90.8% prediction accuracy.QC 20150312
SPO