“…Among the dimensionality reduction and classification methods, the most popular ones include Principal Component Analysis (PCA) [164], Linear Discriminant Analysis (LDA) [165], Quadratic Discriminant Analysis (QDA) [166], Support Vector Machine (SVM) [167], Cluster Analysis (CA) [168], Factorial Discriminant Analysis (FDA) [169], Canonical Discriminant Analysis (CDA) [170], Hierarchical Clustering (HC) [171], and Artificial Neural Network (ANN) [120,164,172]. In turn, the concentration of samples is usually determined with Partial Least Squares (PLS) [173], Multiple Linear Regression (MLR) [174], Ridge Regression (RR), or regression ANN.…”