2019
DOI: 10.1007/s00607-019-00703-w
|View full text |Cite
|
Sign up to set email alerts
|

Indexing temporal RDF graph

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 9 publications
(1 citation statement)
references
References 21 publications
0
0
0
Order By: Relevance
“…InadditiontothetraditionaldatabasesandXMLmodel,somenewmodelshavebeenproposedin theeraofBigDataandartificialintelligence(AI).TheResourceDescriptionFramework(RDF) recommendedbyW3Cisaspecificationforthesemanticdescriptionofstandardizedmetadata,which hasincreasingusageinawiderangeofdata-managementscenarios (Ma,Capretz,&Yan,2016). Efficientandscalablemanagementoflarge-scaleRDFdataisofcrucialimportance (Ma,Lin,Yan,& Zhao,2018;Song,Oh,Seo,&Lee,2019).Inordertosemanticallyrepresentanddealwithtemporal datawiththeRDFmodel,thetemporalRDFmodelwasoriginallyintroducedin (Gutiérrez,Hurtado, &Vaisman,2007).Sincethen,therearesomeproposalsextendingRDFforhandlingtemporaldata, whichareclassifiedaccordingtotheusedreification(i.e.,explicitreificationorimplicitreification) in (Wang&Tansel,2019).ToeffectivelyquerymassivetemporalRDFdata, Yan,Zhao,&Ma(2019) proposedanindexapproachfortemporalRDFgraphs.Theybuilttheprefixpathindexforquerying subjectsoftemporalRDFtriplesandthesuffixindexforqueryingobjectsoftemporalRDFtriples, respectively.Moreimportantly,sincetheRDFmodelcanbetheinfrastructureofknowledgegraphs, somerecenteffortsaredirectedatinvestigatingtemporalknowledgegraphssuchas (Huang,2020;Zhu,Chen,Fan,Cheng,&Zhang,2021;Debrouvier,Parodi,Perazzo,Soliani,&Vaisman,2021).…”
Section: Emerging Temporal Modelsmentioning
confidence: 99%
“…InadditiontothetraditionaldatabasesandXMLmodel,somenewmodelshavebeenproposedin theeraofBigDataandartificialintelligence(AI).TheResourceDescriptionFramework(RDF) recommendedbyW3Cisaspecificationforthesemanticdescriptionofstandardizedmetadata,which hasincreasingusageinawiderangeofdata-managementscenarios (Ma,Capretz,&Yan,2016). Efficientandscalablemanagementoflarge-scaleRDFdataisofcrucialimportance (Ma,Lin,Yan,& Zhao,2018;Song,Oh,Seo,&Lee,2019).Inordertosemanticallyrepresentanddealwithtemporal datawiththeRDFmodel,thetemporalRDFmodelwasoriginallyintroducedin (Gutiérrez,Hurtado, &Vaisman,2007).Sincethen,therearesomeproposalsextendingRDFforhandlingtemporaldata, whichareclassifiedaccordingtotheusedreification(i.e.,explicitreificationorimplicitreification) in (Wang&Tansel,2019).ToeffectivelyquerymassivetemporalRDFdata, Yan,Zhao,&Ma(2019) proposedanindexapproachfortemporalRDFgraphs.Theybuilttheprefixpathindexforquerying subjectsoftemporalRDFtriplesandthesuffixindexforqueryingobjectsoftemporalRDFtriples, respectively.Moreimportantly,sincetheRDFmodelcanbetheinfrastructureofknowledgegraphs, somerecenteffortsaredirectedatinvestigatingtemporalknowledgegraphssuchas (Huang,2020;Zhu,Chen,Fan,Cheng,&Zhang,2021;Debrouvier,Parodi,Perazzo,Soliani,&Vaisman,2021).…”
Section: Emerging Temporal Modelsmentioning
confidence: 99%