The sludge products of urban sewage treatment plants in Beijing are increasing year by year, and there is a large amount of stagnation, which requires scientific and reasonable disposal strategies. Currently, the woodland in the mountainous area of Beijing is considered the main means for sludge disposal; however, because the heavy metals in the sludge may cause potential pollution to the soil and groundwater, it is unclear how much sludge can be applied per unit area. To ensure the sustainable disposal of sludge, it is necessary to measure the risk of heavy metals on soil and groundwater under different sludge application rates to determine the most scientific disposal plan. In this study, the undisturbed soil columns obtained from the field were used to clarify the migration behaviors and accumulation of eight hazardous heavy metals under simulated rainfall conditions, and three sets of tests (the application rates of sludge products were 30 t·ha−1·a−1, 60 t·ha−1·a−1 and 120 t·ha−1·a−1 respectively) were set based on the supply–demand relationship between Beijing’s annual sludge output and the woodland area available for sludge disposal. The results showed that there were significant differences in the migration rules of heavy metals under different application rates, which were mainly reflected in the differences in accumulation in each layer of the soil. In terms of the leaching efficiency of heavy metals, except for Cadmium, the leaching rates of other heavy metals did not exceed 0.1%, indicating that most heavy metals accumulated in the soil. During the application process of sludge products, Arsenic and Cadmium posed a greater potential risk to groundwater than other heavy metals, to which should be paid sufficient attention. Based on the accumulation of heavy metals in soil, Arsenic was the main factor limiting the amount and frequency of sludge product application. The application rate of 60 t·ha−1·a−1 was preferred compared with the other two tests because it presented minimal risk to groundwater and soil in the short term, while the total amount of sludge disposal can be maximized.