We present the results of numerical simulations of the three-dimensional thermocapillary motion of deformable viscous drops under the influence of a constant temperature gradient within a second liquid medium. In particular, we examine the effects of shape deformations and convective transport of momentum and energy on the migration velocity of the drop. A numerical method based on a continuum model for the fluid–fluid interface is used to account for finite drop deformations. An oct-tree adaptive grid refinement scheme is integrated into the numerical method in order to track the interface without the need for interface reconstruction. Interface deformations arising from the convection of energy at small Reynolds numbers are found to be negligible. On the other hand, deformations of the drop shape due to inertial effects, though small in magnitude, are found to retard the motion of the drop. The steady drop shapes are found to resemble oblate or prolate spheroids without fore and aft symmetry, with the direction of elongation of the drop depending on the value of the density ratio between the two phases. As in the case of a gas bubble, convection of energy is shown to retard the thermocapillary motion of a viscous drop, as the isotherms get wrapped around the front surface of the drop and effectively reduce the surface temperature gradient which drives the motion. The effect of inertia on the mobility of viscous drops is found to be weaker than that in the case of gas bubbles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.