2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC) 2017
DOI: 10.1109/iccerec.2017.8226709
|View full text |Cite
|
Sign up to set email alerts
|

Indonesia ancient temple classification using convolutional neural network

Abstract: It is our great pleasure to welcome you to the International Conference on Control, Electronics, Renewable Energy, and Communications 2017 (ICCEREC 2017), which is already the 3rd running; while the 1st and the 2nd were held in Bandung in 2015 and 2016, respectively. This conference provides an international forum for researchers, academicians, professionals, and students from various engineering fields and with cross-disciplinary interests in control, electronics, renewable energy, computer engineering and co… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
4
0
5

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
4
1

Relationship

0
10

Authors

Journals

citations
Cited by 12 publications
(9 citation statements)
references
References 5 publications
0
4
0
5
Order By: Relevance
“…Penggunaan library pada python menggunakan Tensorflow untuk mengekpresikan suatu permaslahan matematika pada Deep Learning. Deep learning merupakan salah satu bidang dari Machine Learning yang memanfaatkan jaringan syaraf tirutambahkan saran untuk implementasi permasalahan dengan dataset yag besar [5].…”
Section: Dalam Proses Face Recognition Ini Juga Digunakan Algoritmaunclassified
“…Penggunaan library pada python menggunakan Tensorflow untuk mengekpresikan suatu permaslahan matematika pada Deep Learning. Deep learning merupakan salah satu bidang dari Machine Learning yang memanfaatkan jaringan syaraf tirutambahkan saran untuk implementasi permasalahan dengan dataset yag besar [5].…”
Section: Dalam Proses Face Recognition Ini Juga Digunakan Algoritmaunclassified
“…The use of CNN with SGD optimization conducted by [6] is used to classify temple imagery. There are 6 classes with 100 epoch training that get 86.28% accuracy.…”
Section: Related Workmentioning
confidence: 99%
“…Pooling Layer tends to use functions with Feature Map as its input, subsequently processing with various statistical operations available, using nearby pixel values [29]. In addition, the application often requires the use of (1) Max Pooling with size 2x2 and Stride 2, with a value taken for each shift of this filter, and the largest in the 2x2 area, (2) Average Pooling, which takes the average value [30].…”
Section: Fig 1 Convolution Layer [30]mentioning
confidence: 99%