The quantum adiabatic unstructured search algorithm is one of only a handful of quantum adiabatic optimization algorithms to exhibit provable speedups over their classical counterparts. With no fault tolerance theorems to guarantee the resilience of such algorithms against errors, understanding the impact of imperfections on their performance is of both scientific and practical significance. We study the robustness of the algorithm against various types of imperfections: limited control over the interpolating schedule, Hamiltonian misspecification, and interactions with a thermal environment. We find that the unstructured search algorithm's quadratic speedup is generally not robust to the presence of any one of the above non-idealities, and in some cases we find that it imposes unrealistic conditions on how the strength of these noise sources must scale to maintain the quadratic speedup.Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 7 We exclude here algorithms derived via the polynomial equivalence theorem between the circuit and adiabatic models of quantum computing [61] since the 'final' Hamiltonians are not necessarily diagonal in the computational basis.