ABSTRACT:Beagle dogs are commonly used for toxicological and pharmacological studies of drug candidates in the pharmaceutical industry. Recently, we reported a CYP1A2-deficient dog with a nonsense mutation (C1117T). In this study, using CYP1A2-deficient and wildtype dog liver microsomes, substrate specificity of dog CYP1A2 was investigated and compared with human CYP1A2. For this purpose, 11 cytochrome P450 assays were conducted in human or dog liver microsomes, genotyped for the CYP1A2 C1117T mutation. There was no statistical difference between C/C, C/T, and T/T dogs in activities of aminopyrine N-demethylase, aniline hydroxylase, bufuralol 1-hydroxylase, and midazolam 1-hydroxylase. On the other hand, activities of phenacetin O-deethylase, ethoxyresorufin O-deethylase, and tacrine 1-hydroxylase, which were catalyzed by human CYP1A2, were significantly lower in T/T dogs than C/C dogs, indicating that dog and human CYP1A2 was responsible for these activities. However, dog CYP1A2 was not involved in caffeine metabolism, a marker activity for human CYP1A2. As for endogenous substances, our results indicated that human CYP1A2, but not dog CYP1A2, is responsible for melatonin 6-hydroxylase, 9-cis-retinal oxidase, and estradiol 2-hydroxylase activity. In conclusion, tacrine, ethoxyresorufin, and phenacetin are probe substrates for CYP1A2 not only in humans but also in dogs. However, caffeine, melatonin, 9-cis-retinal, and estradiol, which are substrate for human CYP1A2, are not good substrates for dog CYP1A2. The finding that there are species differences in substrate specificity of CYP1A2 between humans and beagle dogs is an important issue and must be considered for preclinical studies using beagle dogs.