ABSTRACT:This study investigated the metabolic interaction between fibrates and statin hydroxy acids in human hepatocytes. Gemfibrozil (GFZ) modestly affected the formation of -oxidative products and CYP3A4-mediated oxidative metabolites of simvastatin hydroxy acid (SVA) but markedly inhibited the glucuronidation-mediated lactonization of SVA and the glucuronidation of a -oxidation product (IC 50 ϳ50 and 15 M, respectively). In contrast, fenofibrate had a minimal effect on all the metabolic pathways of SVA. GFZ also significantly inhibited (IC 50 ϳ50-60 M) the oxidation of cerivastatin (CVA) and rosuvastatin (RVA), but not of atorvastatin (AVA), while effectively decreasing (IC 50 ϳ30 to 60 M) the lactonization of all three statins. As was observed previously with other statin hydroxy acids, RVA underwent significant glucuronidation to form an acyl glucuronide conjugate and lactonization to form RVA lactone in human liver microsomes and by UGT 1A1 and 1A3. While GFZ is not an inhibitor of CYP3A4, it is a competitive inhibitor (K i ؍ 87 M) of CYP2C8, a major catalyzing enzyme for CVA oxidation. These results suggest that 1) the pharmacokinetic interaction observed between GFZ and statins was not likely mediated by the inhibitory effect of GFZ on the -oxidation, but rather by its effect primarily on the glucuronidation and non-CYP3A-mediated oxidation of statin hydroxy acids, and 2) there is a potential difference between fibrates in their ability to affect the pharmacokinetics of statins, and among statins in their susceptibility to metabolic interactions with GFZ in humans.Fibrates, lipid-regulating agents, and hydroxymethylglutaryl-coenzyme A reductase inhibitors or so called "statins", cholesterol lowering agents, are frequently prescribed together to treat patients with mixed hyperlipidemia (Shek and Ferrill, 2001). There have been reports of increased risk of myopathy, including rhabdomyolysis with this coadministration (Murdock et al., 1999). Despite being generally accepted as a class effect for all fibrate-statin combinations, this increased risk has been observed at varied incidences with different fibrates and statins. More documented cases for myopathy have been reported with gemfibrozil (GFZ 1 )-statin combined therapy than with other fibrate-statin combinations (Shek and Ferrill, 2001). Recently, cerivastatin (CVA) was withdrawn from the market due to disproportionate numbers of fatal rhabdomyolysis cases (compared with other marketed statins), many of which occurred in patients receiving concomitant GFZ (Farmer, 2001).Although it has generally been accepted that the increased risk of myopathy is due primarily to a pharmacodynamic drug-drug interaction, recent studies have suggested that the increased risk might also have a pharmacokinetic origin. In recent clinical studies, increases in the exposure mainly to statin hydroxy acids, but minimally to the lactone form of statins, were observed following coadministration of GFZ and statins (Backman et al., 2000;Kyrklund et al., 2001). Subsequently, ...
A series of studies were conducted to explore the mechanism of the pharmacokinetic interaction between simvastatin (SV) and gemfibrozil (GFZ) reported recently in human subjects. After administration of a single dose of SV (4 mg/kg p.o.) to dogs pretreated with GFZ (75 mg/kg p.o., twice daily for 5 days), there was an increase (ϳ4-fold) in systemic exposure to simvastatin hydroxy acid (SVA), but not to SV, similar to the observation in humans. GFZ pretreatment did not increase the ex vivo hydrolysis of SV to SVA in dog plasma. In dog and human liver microsomes, GFZ exerted a minimal inhibitory effect on CYP3A-mediated SVA oxidation, but did inhibit SVA glucuronidation. After i.v. administration of [14 C]SVA to dogs, GFZ treatment significantly reduced (2-3-fold) the plasma clearance of SVA and the biliary excretion of SVA glucuronide (together with its cyclization product SV), but not the excretion of a major oxidative metabolite of SVA, consistent with the in vitro findings in dogs. Among six human UGT isozymes tested, UGT1A1 and 1A3 were capable of catalyzing the glucuronidation of both GFZ and SVA. Further studies conducted in human liver microsomes with atorvastatin (AVA) showed that, as with SVA, GFZ was a less potent inhibitor of the CYP3A4-mediated oxidation of this drug than its glucuronidation. However, with cerivastatin (CVA), the glucuronidation as well as the CYP2C8-and CYP3A4-mediated oxidation pathways were much more susceptible to inhibition by GFZ than was observed with SVA or AVA. Collectively, the results of these studies provide metabolic insight into the nature of drug-drug interaction between GFZ and statins, and a possible explanation for the enhanced susceptibility of CVA to interactions with GFZ.
Despite increased understanding of the biological basis for sleep control in the brain, few novel mechanisms for the treatment of insomnia have been identified in recent years. One notable exception is inhibition of the excitatory neuropeptides orexins A and B by design of orexin receptor antagonists. Herein, we describe how efforts to understand the origin of poor oral pharmacokinetics in a leading HTS-derived diazepane orexin receptor antagonist led to the identification of compound 10 with a 7-methyl substitution on the diazepane core. Though 10 displayed good potency, improved pharmacokinetics, and excellent in vivo efficacy, it formed reactive metabolites in microsomal incubations. A mechanistic hypothesis coupled with an in vitro assay to assess bioactivation led to replacement of the fluoroquinazoline ring of 10 with a chlorobenzoxazole to provide 3 (MK-4305), a potent dual orexin receptor antagonist that is currently being tested in phase III clinical trials for the treatment of primary insomnia.
The novel T-type antagonist ( S)- 5 has been prepared and evaluated in in vitro and in vivo assays for T-type calcium ion channel activity. Structural modification of the piperidine leads 1 and 2 afforded the fluorinated piperidine ( S)- 5, a potent and selective antagonist that displayed in vivo CNS efficacy without adverse cardiovascular effects.
In-vitro studies were conducted to assess the impact of CYP2C9 genotype on the metabolism (methyl hydroxylation) and pharmacokinetics of celecoxib, a novel cyclooxygenase-2 inhibitor and CYP2C9 substrate. When compared to cDNA-expressed wild-type CYP2C9 (CYP2C9*1), the Vmax/Km ratio for celecoxib methyl hydroxylation was reduced by 34% and 90% in the presence of recombinant CYP2C9*2 and CYP2C9*3, respectively. These data indicated that the amino acid substitution at position 359 (Ile to Leu) elicited a more pronounced effect on the metabolism of celecoxib than did a substitution at position 144 (Arg to Cys). The Vmax/Km ratio was also decreased in microsomes of livers genotyped CYP2C9*1/*2 (47% decrease, mean of two livers), or CYP2C9*1/*3 (59% decrease, one liver). In all cases, these changes were largely reflective of a decrease in Vmax, with a minimal change in Km. Based on simulations of the in-vitro data obtained with the recombinant CYP2C9 proteins, it was anticipated that the pharmacokinetics of celecoxib (as a much as a five-fold increase in plasma AUC) would be altered (versus CYP2C9*1/*1 subjects) in subjects genotyped heterozygous or homozygous for the CYP2C9*2 (Cys144) or CYP2C9*3 (Leu359) allele. In a subsequent clinical study, the AUC of celecoxib was increased (versus CYP2C9*1/*1 subjects) approximately 2.2-fold (range, 1.6-3-fold) in two CYP2C9*1/*3 subjects and one CYP2C9*3/*3 subject receiving a single oral dose (200 mg) of the drug. In contrast, there was no significant change in celecoxib AUC in two subjects genotyped CYP2C9*1/*2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.