ABSTRACT:The active forms of all marketed hydroxymethylglutaryl (HMG)-CoA reductase inhibitors share a common dihydroxy heptanoic or heptenoic acid side chain. In this study, we present evidence for the formation of acyl glucuronide conjugates of the hydroxy acid forms of simvastatin (SVA), atorvastatin (AVA), and cerivastatin (CVA) in rat, dog, and human liver preparations in vitro and for the excretion of the acyl glucuronide of SVA in dog bile and urine. Upon incubation of each statin (SVA, CVA or AVA) with liver microsomal preparations supplemented with UDP-glucuronic acid, two major products were detected. Based on analysis by high-pressure liquid chromatography, UV spectroscopy, and/or liquid chromatography (LC)-mass spectrometry analysis, these metabolites were identified as a glucuronide conjugate of the hydroxy acid form of the statin and the corresponding ␦-lactone.
A series of studies were conducted to explore the mechanism of the pharmacokinetic interaction between simvastatin (SV) and gemfibrozil (GFZ) reported recently in human subjects. After administration of a single dose of SV (4 mg/kg p.o.) to dogs pretreated with GFZ (75 mg/kg p.o., twice daily for 5 days), there was an increase (ϳ4-fold) in systemic exposure to simvastatin hydroxy acid (SVA), but not to SV, similar to the observation in humans. GFZ pretreatment did not increase the ex vivo hydrolysis of SV to SVA in dog plasma. In dog and human liver microsomes, GFZ exerted a minimal inhibitory effect on CYP3A-mediated SVA oxidation, but did inhibit SVA glucuronidation. After i.v. administration of [14 C]SVA to dogs, GFZ treatment significantly reduced (2-3-fold) the plasma clearance of SVA and the biliary excretion of SVA glucuronide (together with its cyclization product SV), but not the excretion of a major oxidative metabolite of SVA, consistent with the in vitro findings in dogs. Among six human UGT isozymes tested, UGT1A1 and 1A3 were capable of catalyzing the glucuronidation of both GFZ and SVA. Further studies conducted in human liver microsomes with atorvastatin (AVA) showed that, as with SVA, GFZ was a less potent inhibitor of the CYP3A4-mediated oxidation of this drug than its glucuronidation. However, with cerivastatin (CVA), the glucuronidation as well as the CYP2C8-and CYP3A4-mediated oxidation pathways were much more susceptible to inhibition by GFZ than was observed with SVA or AVA. Collectively, the results of these studies provide metabolic insight into the nature of drug-drug interaction between GFZ and statins, and a possible explanation for the enhanced susceptibility of CVA to interactions with GFZ.
Aims To identify the cytochrome P450 (CYP) isoforms responsible for the metabolism of simvastatin hydroxy acid (SVA), the most potent metabolite of simvastatin (SV). Methods The metabolism of SVA was characterized in vitro using human liver microsomes and recombinant CYPs. The effects of selective chemical inhibitors and CYP antibodies on SVA metabolism were assessed in human liver microsomes. Results In human liver microsomes, SVA underwent oxidative metabolism to three major oxidative products, with values for Km and V max ranging from about 50 to 80 m M and 0.6 to 1.9 nmol min -1 mg -1 protein, respectively. Recombinant CYP3A4, CYP3A5 and CYP2C8 all catalysed the formation of the three SVA metabolites, but CYP3A4 was the most active. CYP2D6 as well as CYP2C19, CYP2C9, CYP2A6, CYP1A2 did not metabolize SVA. Whereas inhibitors that are selective for CYP2D6, CYP2C9 or CYP1A2 did not significantly inhibit the oxidative metabolism of SVA, the CYP3A4/5 inhibitor troleandomycin markedly (about 90%) inhibited SVA metabolism. Quercetin, a known inhibitor of CYP2C8, inhibited the microsomal formation of SVA metabolites by about 25-30%. Immunoinhibition studies revealed 80-95% inhibition by anti-CYP3A antibody, less than 20% inhibition by anti-CYP2C19 antibody, which cross-reacted with CYP2C8 and CYP2C9, and no inhibition by anti-CYP2D6 antibody. Conclusions The metabolism of SVA in human liver microsomes is catalysed primarily ( ≥ 80%) by CYP3A4/5, with a minor contribution ( £ 20%) from CYP2C8. CYP2D6 and other major CYP isoforms are not involved in the hepatic metabolism of SVA.
Aims To determine the effects of mibefradil on the metabolism in human liver microsomal preparations of the HMG-CoA reductase inhibitors simvastatin, lovastatin, atorvastatin, cerivastatin and fluvastatin. Methods Metabolism of the above five statins (0.5, 5 or 10 mm), as well as of specific CYP3A4/5 and CYP2C8/9 marker substrates, was examined in human liver microsomal preparations in the presence and absence of mibefradil (0.1-50 mm). Results Mibefradil inhibited, in a concentration-dependent fashion, the metabolism of the four statins (simvastatin, lovastatin, atorvastatin and cerivastatin) known to be substrates for CYP3A. The potency of inhibition was such that the IC 50 values (<1 mm) for inhibition of all of the CYP3A substrates fell within the therapeutic plasma concentrations of mibefradil, and was comparable with that of ketoconazole. However, the inhibition by mibefradil, unlike that of ketoconazole, was at least in part mechanism-based. Based on the kinetics of its inhibition of hepatic testosterone 6b-hydroxylase activity, mibefradil was judged to be a powerful mechanism-based inhibitor of CYP3A4/5, with values for K inactivation , K i and partition ratio (moles of mibefradil metabolized per moles of enzyme inactivated) of 0.4 min −1 , 2.3 mm and 1.7, respectively. In contrast to the results with substrates of CYP3A, metabolism of fluvastatin, a substrate of CYP2C8/9, and the hydroxylation of tolbutamide, a functional probe for CYP2C8/9, were not inhibited by mibefradil. Conclusions Mibefradil, at therapeutically relevant concentrations, strongly suppressed the metabolism in human liver microsomes of simvastatin, lovastatin, atorvastatin and cerivastatin through its inhibitory effects on CYP3A4/5, while the effects of mibefradil on fluvastatin, a substrate for CYP2C8/9, were minimal in this system. Since mibefradil is a potent mechanism-based inhibitor of CYP3A4/5, it is anticipated that clinically significant drug-drug interactions will likely ensue when mibefradil is coadministered with agents which are cleared primarily by CYP3A-mediated pathways. wide due to the potential for serious drug interactions. Keywords
Purpose Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in GBM xenograft models alone and in combination with radiation and/or temozolomide (TMZ). Experimental design In vitro MK-1775 efficacy alone and in combination with TMZ, and the impact on DNA damage was analyzed by western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI) -MS imaging. Results GBM22 (IC50 = 68 nM) was significantly more sensitive to MK-1775 compared to 5 other GBM xenograft lines including GBM6 (IC50 >300 nM), and this was associated with a significant difference in pan-nuclear γH2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with TMZ in vitro. In an orthotopic GBM22 model, MK-1775 was ineffective when combined with TMZ, while in a flank model of GBM22, MK-1775 exhibited both single agent and combinatorial activity with TMZ. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared to heterotopic GBM22 tumors. Conclusions Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.