Aims To identify the cytochrome P450 (CYP) isoforms responsible for the metabolism of simvastatin hydroxy acid (SVA), the most potent metabolite of simvastatin (SV). Methods The metabolism of SVA was characterized in vitro using human liver microsomes and recombinant CYPs. The effects of selective chemical inhibitors and CYP antibodies on SVA metabolism were assessed in human liver microsomes. Results In human liver microsomes, SVA underwent oxidative metabolism to three major oxidative products, with values for Km and V max ranging from about 50 to 80 m M and 0.6 to 1.9 nmol min -1 mg -1 protein, respectively. Recombinant CYP3A4, CYP3A5 and CYP2C8 all catalysed the formation of the three SVA metabolites, but CYP3A4 was the most active. CYP2D6 as well as CYP2C19, CYP2C9, CYP2A6, CYP1A2 did not metabolize SVA. Whereas inhibitors that are selective for CYP2D6, CYP2C9 or CYP1A2 did not significantly inhibit the oxidative metabolism of SVA, the CYP3A4/5 inhibitor troleandomycin markedly (about 90%) inhibited SVA metabolism. Quercetin, a known inhibitor of CYP2C8, inhibited the microsomal formation of SVA metabolites by about 25-30%. Immunoinhibition studies revealed 80-95% inhibition by anti-CYP3A antibody, less than 20% inhibition by anti-CYP2C19 antibody, which cross-reacted with CYP2C8 and CYP2C9, and no inhibition by anti-CYP2D6 antibody. Conclusions The metabolism of SVA in human liver microsomes is catalysed primarily ( ≥ 80%) by CYP3A4/5, with a minor contribution ( £ 20%) from CYP2C8. CYP2D6 and other major CYP isoforms are not involved in the hepatic metabolism of SVA.
Protein prenylation, involving the alkylation of a specific C-terminal cysteine with a C(15) or C(20) isoprenoid unit, is an essential posttranslational modification required by most GTP-binding proteins for normal biological activity. Despite the ubiquitous nature of this modification and numerous efforts aimed at inhibiting prenylating enzymes for therapeutic purposes, the function of prenylation remains unclear. To explore the role the isoprenoid plays in mediating protein-protein recognition, we have synthesized a photoactivatable, isoprenoid-containing cysteine analogue (2) designed to act as a mimic of the C-terminus of prenylated proteins. Photolysis experiments with 2 and RhoGDI (GDI), a protein which interacts with prenylated Rho proteins, suggest that the GDI is in direct contact with the isoprenoid moiety. These results, obtained using purified GDI as well as Escherichia coli (E. coli) crude extract containing GDI, suggest that this analogue will be an effective and versatile tool for the investigation of putative isoprenoid binding sites in a variety of systems. Incorporation of this analogue into peptides or proteins should allow for even more specific interactions between the photoactivatable isoprenoid and any number of isoprenoid binding proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.