“…P pnq so that the eliminator for pN, r0, sucsq becomes P : N Ñ Set step 0 : 1 Ñ P p0q step suc : pn : Nq Ñ P pnq Ñ P psucpnqq elim 1 X pP, step 0 , step suc q : px : Nq Ñ P pxq For polynomial functors F , l F can be defined inductively over the structure of F as is given in e.g. Dybjer and Setzer [8]. However, l F and dmap F can be defined for any functor F : Set Ñ Set by defining l F pP, xq : ty : F pΣ z : A. P pzqq|Fpπ 0 qpyq xu dmap F pP, step c , xq : F pλy.xy, step c pyqyqpxq .…”