Forging tools must be able to withstand very strong mechanical, thermal, tribological, and chemical stresses. The extent to which a tool can withstand these stresses depends on the material used and its pre-treatment as well as the heat and surface treatment, i.e. the load capacity. The ratio of stress to load capacity determines how high the tool life of a forging tool is. This paper deals with the variations in the tool life of forging tools using the example of a specific industrial stage sequence and production conditions. Due to a large number of influencing variables that have an effect on the tool during the entire tool life history, the focus of this work is placed on influencing variables of the forming process. Based on real production parameters of a forging company, which are recorded during a period for the investigation, the process data are analyzed about an influence on the tool life. The investigation focuses on four influencing variables, namely the subjective assessment of the end of the tool life, the interaction between the forming stages, production interruptions, and the cooling and lubrication of the forming tools. For the parameters that are not yet recorded during the trials, promising available measurement methods are identified and tested under laboratory conditions. One example of this is the recording of the actual spray quantities that are sprayed onto the tool surface before the forming process. The results of the investigations show that the tool life fluctuations can be reduced by about 16% and as a consequence, the average tool life can be increased by about 13%.