Emissions of phthalates and phthalate alternatives from vinyl flooring and crib mattress covers were measured in a specially designed chamber. The gas-phase concentrations versus time were measured at four different temperatures, that is, 25, 36, 45, and 55 °C. The key parameter that controls the emissions (y0, gas-phase concentration in equilibrium with the material phase) was determined, and the emissions were found to increase significantly with increasing temperature. Both the material-phase concentration (C0) and the chemical vapor pressure (Vp) were found to have great influence on the value of y0. The measured ratios of C0 to y0 were exponentially proportional to the reciprocal of temperature, in agreement with the van't Hoff equation. A emission model was validated at different temperatures, with excellent agreement between model calculations and chamber observations. In residential homes, an increase in the temperature from 25 to 35 °C can elevate the gas-phase concentration of phthalates by more than a factor of 10, but the total airborne concentration may not increase that much for less volatile compounds. In infant sleep microenvironments, an increase in the temperature of mattress can cause a significant increase in emission of phthalates from the mattress cover and make the concentration in the infant's breathing zone about four times higher than that in the bulk room air, resulting in potentially high exposure.