Transfusions of RBCs stored for longer durations are associated with adverse effects in hospitalized patients. We prospectively studied 14 healthy human volunteers who donated standard leukoreduced, double RBC units. One unit was autologously transfused "fresh" (3-7 days of storage), and the other "older" unit was transfused after 40 to 42 days of storage. Of the routine laboratory parameters measured at defined times surrounding transfusion, significant differences between fresh and older transfusions were only observed in iron parameters and markers of extravascular hemolysis.
IntroductionThe safety of transfusing RBCs after longer durations of refrigerated storage was recently identified as "the most critical issue facing transfusion medicine." 1 page 667 Concern was heightened when a large observational study of cardiac surgery patients found an increased risk of postoperative complications and reduced survival in those who received RBCs stored for more than 14 days. 2 Although still controversial, adverse clinical consequences have since been reported in most, [3][4][5] although not all, 6,7 epidemiologic studies of transfusions of RBCs stored for longer durations, but still within Food and Drug Administration (FDA) guidelines. The association between the duration of RBC storage and increased rates of serious infections, sepsis, and mortality is particularly strong in trauma patients. [7][8][9][10][11] Definitive determination of the potential risks associated with transfusion of RBCs stored for longer durations has been elusive, in part because the mechanisms responsible have not yet been identified.More than 14 million RBC units are transfused in the United States each year, with a mean storage interval of 18 days before transfusion. 12 During storage, RBCs undergo cumulative biochemical and biomechanical changes (the "storage lesion") that reduce their survival in vivo after transfusion. 13,14 In mouse models, 15 transfusion of RBCs stored for longer durations was followed by brisk extravascular clearance of a subpopulation of these cells, which were damaged during storage and removed by macrophages in the spleen and liver of recipient mice. The iron liberated by phagocytic digestion of these RBCs rapidly entered the systemic circulation in amounts that exceeded the transport capacity of plasma transferrin, the physiologic iron-binding protein; in this way, circulating non-transferrin-bound iron appeared and promoted the proliferation of pathogenic bacteria both in vitro 15 and in vivo. 16 We hypothesized that the infectious complications observed in human patients after transfusion of RBCs stored for longer durations were, at least in part, the result of the production of circulating non-transferrin-bound iron. Therefore, we prospectively examined healthy human volunteers to determine (1) if transfusion of autologous RBCs stored for longer durations was followed by the appearance of circulating non-transferrin-bound iron in vivo, and (2) if this increased circulating non-transferrinbound iron was assoc...