The visual functions of the diverse retinal ganglion cell types in the primate retina, and the parallel visual pathways they initiate, remain poorly understood. Here, the unusual physiological and computational properties of the ON and OFF smooth monostratified (SM) ganglion cells are explored. Large-scale multi-electrode recordings from 48 macaque retinas revealed that these cells exhibited strikingly irregular receptive field structure composed of spatially segregated hotspots, quite different from the receptive fields of previously described retinal ganglion cell types. The ON and OFF SM cells are paired cell types, but OFF SM cells exhibited stronger hotspot structure than ON cells. Targeted visual stimulation and computational inference demonstrate strong nonlinear subunit properties of each hotspot that contributed to the signaling properties of SM cells. Analysis of shared inputs to neighboring SM cells indicated that each hotspot could not be explained by an individual presynaptic input. Surprisingly, visual stimulation of different hotspots produced subtly different spatiotemporal spike waveforms in the same SM cell, consistent with a dendritic contribution to hotspot structure. These findings point to a previously unreported nonlinear mechanism in the output of the primate retina that contributes to signaling spatial information.
Receptive field properties of simultaneously recorded retinal ganglion cell typesTo explore the properties of poorly understood RGC types, large-scale multi-electrode recordings were used to simultaneously record the light responses of hundreds of RGCs