Abstract:Recognition of transportation modes can be used in different applications including human behavior research, transport management and traffic control. Previous work on transportation mode recognition has often relied on using multiple sensors or matching Geographic Information System (GIS) information, which is not possible in many cases. In this paper, an approach based on ensemble learning is proposed to infer hybrid transportation modes using only Global Position System (GPS) data. First, in order to distinguish between different transportation modes, we used a statistical method to generate global features and extract several local features from sub-trajectories after trajectory segmentation, before these features were combined in the classification stage. Second, to obtain a better performance, we used tree-based ensemble models (Random Forest, Gradient Boosting Decision Tree, and XGBoost) instead of traditional methods (K-Nearest Neighbor, Decision Tree, and Support Vector Machines) to classify the different transportation modes. The experiment results on the later have shown the efficacy of our proposed approach. Among them, the XGBoost model produced the best performance with a classification accuracy of 90.77% obtained on the GEOLIFE dataset, and we used a tree-based ensemble method to ensure accurate feature selection to reduce the model complexity.