Glycerol-3-phosphate
dehydrogenase is a biomedically important
enzyme that plays a crucial role in lipid biosynthesis. It is activated
by a ligand-gated conformational change that is necessary for the
enzyme to reach a catalytically competent conformation capable of
efficient transition-state stabilization. While the human form (
hl
GPDH) has been the subject of extensive structural and
biochemical studies, corresponding computational studies to support
and extend experimental observations have been lacking. We perform
here detailed empirical valence bond and Hamiltonian replica exchange
molecular dynamics simulations of wild-type
hl
GPDH
and its variants, as well as providing a crystal structure of the
binary
hl
GPDH·NAD R269A variant where the enzyme
is present in the open conformation. We estimated the activation free
energies for the hydride transfer reaction in wild-type and substituted
hl
GPDH and investigated the effect of mutations on catalysis
from a detailed structural study. In particular, the K120A and R269A
variants increase both the volume and solvent exposure of the active
site, with concomitant loss of catalytic activity. In addition, the
R269 side chain interacts with both the Q295 side chain on the catalytic
loop, and the substrate phosphodianion. Our structural data and simulations
illustrate the critical role of this side chain in facilitating the
closure of
hl
GPDH into a catalytically competent
conformation, through modulating the flexibility of a key catalytic
loop (292-LNGQKL-297). This, in turn, rationalizes a tremendous 41,000
fold decrease experimentally in the turnover number,
k
cat
, upon truncating this residue, as loop closure is
essential for both correct positioning of key catalytic residues in
the active site, as well as sequestering the active site from the
solvent. Taken together, our data highlight the importance of this
ligand-gated conformational change in catalysis, a feature that can
be exploited both for protein engineering and for the design of allosteric
inhibitors targeting this biomedically important enzyme.